M.S. students must complete the professional development and leadership course, ENGI E4000, as a graduation requirement. Ph.D. candidates are strongly encouraged to complete ENGI E6001–6004 and should consult their program for PDL requirements.

M.S. in Earth and Environmental Engineering (M.S.-EEE)

The M.S.-EEE program is designed for engineers and scientists who plan to pursue, or are already engaged in, environmental management/development careers. The focus of the program is the environmentally sound mining and processing of primary materials (minerals, energy, and water) and the recycling or proper disposal of used materials. The program also includes technologies for assessment and remediation of past damage to the environment. Students can choose a pace that allows them to complete the M.S.-EEE requirements while being employed.

M.S.-EEE graduates are specially qualified to work for engineering, financial, and operating companies engaged in mineral processing ventures, the environmental industry, environmental groups in all industries, and for city, state, and federal agencies responsible for the environment and energy/resource conservation. At the present time, the U.S. environmental industry comprises nearly 30,000 big and small businesses with total revenues of more than $150 billion. Sustainable development and environmental quality has become a top priority of government and industry in the United States and many other nations.

This M.S. program is offered in collaboration with the Departments of Civil Engineering and Earth and Environmental Sciences. Many of the teaching faculty are affiliated with Columbia’s Earth Engineering Center. For students with a B.S. in engineering, at least 30 points (ten courses) are required. Students may carry out a research project (3 credits) or write a thesis worth 6 points. A number of areas of study are available for the M.S.-EEE, and students may choose courses that match their interest and career plans.

Additionally, there are three optional concentrations in the program, in each of which there are a number of required specific core courses and electives. The concentrations are described briefly below; details and the lists of specific courses for each track are available from the department. Students interested in a specific focus in Mining Engineering or related fields should consult their faculty adviser for relevant course listings.

Water Resources and Climate Risks

Climate-induced risk is a significant component of decision making for the planning, design, and operation of water resource systems, and related sectors such as energy, health, agriculture, ecological resources, and natural hazards control. Climatic uncertainties can be broadly classified into two areas: (1) those related to anthropogenic climate change; (2) those related to seasonal-to century-scale natural variations. Climate change impacts the design of physical, social, and financial infrastructure systems to support the sectors listed above. The climate variability and predictability issues impact systems operation, and hence design. The goal of the M.S. concentration in water resources and climate risks is to provide (1) a capacity for understanding and quantifying the projections for climate change and variability in the context of decisions for water resources and related sectors of impact; and (2) skills for integrated risk assessment and management for operations and design, as well as for regional policy analysis and management. Required classes include:

  • CIEE E4250 Hydrosystems
  • EACE E4163 Sustainable water treatment and reuse
  • EAEE E4257 Environmental data analysis and modeling

Sustainable Energy

Building and shaping the energy infrastructure of the twenty-first century is one of the central tasks for modern engineering. The purpose of the sustainable energy concentration is to expose students to modern energy technologies and infrastructures and to the associated environmental, health, and resource limitations. Emphasis will be on energy generation and use technologies that aim to overcome the limits to growth that are experienced today. Energy and economic well-being are tightly coupled. Fossil fuel resources are still plentiful, but access to energy is limited by environmental and economic constraints. A future world population of 10 billion people trying to approach the standard of living of the developed nations cannot rely on today’s energy technologies and infrastructures without severe environmental impacts. Concerns over climate change and changes in ocean chemistry require reductions in carbon dioxide emissions, but most alternatives to conventional fossil fuels, including nuclear energy, are too expensive to fill the gap. Yet access to clean, cheap energy is critical for providing minimal resources: water, food, housing, and transportation.

Concentration-specific classes will sketch out the availability of resources, their geographic distribution, the economic and environmental cost of resource extraction, and avenues for increasing energy utilization efficiency, such as cogeneration, district heating, and distributed generation of energy. Classes will discuss technologies for efficiency improvement in the generation and consumption sector; energy recovery from solid wastes; alternatives to fossil fuels, including solar and wind energy, energy storage; and technologies for addressing the environmental concerns over the use of fossil fuels. Classes on climate change, air quality, and health impacts focus on the consequences of energy use. Policy and its interactions with environmental sciences and energy engineering will be another aspect of the concentration. Additional specialization may consider region-specific energy development. Required classes include:

  • EAEE E4002 Alternative energy resources
  • EEEL E4220 Energy system economics and optimization

Sustainable Mining and Materials

Earth mineral and metal resources are the backbone of civilization and are critical to economic development and meeting the demands of a growing population. their development today faces several big challenges: (i) declining value content in the available ore bodies and poor quality of the resources; (ii) increasing focus on safety and health risks, and environmental impacts; (iii) inefficient and high energy and water consumption; (iv) huge risks associated with waste generation and management. 

It is well recognized in the earth resource development industry that the traditional processing paradigm is no longer sustainable and cannot address these serious challenges. The overall goal of industry to develop and implement technologies for sensible and sustainable use of earth resources is part  of a "mines of the future" paradigm, which encompasses topics such as mine-to-metal integration, modular processing, digital optimization, machine learning and AI, sensors and chemometrics, benign process chemicals, and a host of other forward-looking concepts. A similar effort and outlook exists for urban mining and recycling. The transformation of waste to energy and the recovery of minerals from recycling streams are examples of these areas that EEE is a world leader in. The EEE program in Sustainable Mining and Materials integrates foundational engineering principles and processes with the transformational innovations under development in the earth resources management sector. Core classes include:

  • EAEE E4160 Solid and hazardous waste management
  • EAEE E4200 Introduction to sustainable production of earth mineral & metal resources
  • EAEE E4228 Separation science and technology in sustainable earth resources development

 

M.S. in Carbon Management (MCM)

The program is designed to prepare students to create and implement multifaceted solutions to the carbon problem with an in-depth understanding of the complexity and multidisciplinary nature of the issues.

Coursework includes 30 credits of graduate coursework. Depending on student's backgrounds, some undergraduate level science courses may be required. Each student will develop an academic plan with the program director. There are three options for completing the 30 credits:

  • 30 credits of lecture courses
  • 24 credits of lecture courses and 6 credits of research with a culminating Master's Thesis
  • 27 credits of lecture courses and 3 credits of research with a concluding report


Core courses:

  • EAEE E4300/E6212 Introduction to carbon management
  • EAEE E4302 Carbon capture
  • EAEE E4301 Carbon storage
  • EAEE E4305 CO2 utilization and conversion

 

Professional Degree; Engineer of Mines

The program is designed for engineers who wish to do advanced work beyond the level of the M.S. degree but who do not desire to emphasize research. Admissions requirements include Undergraduate engineering degree, minimum 3.0 GPA, and GRE.

Candidates must complete at least 30 credits of graduate work beyond the M.S., or 60 points of graduate work beyond the B.S. No thesis is required. All degree requirements must be completed within 5 years of the beginning of the first course credited toward the degree. 

Coursework includes four core required courses and six elective courses from a pre-approved list of choices.

Core courses:

  • EAEE E4001 Industrial ecology of earth resources
  • EAEE E4009 Geographic information systems (GIS) for resource, environmental and infrastructure management

Elective courses must be six courses at the 4000 or higher level Earth and Environmental Engineering Department, the Chemical Engineering Department, or others as approved by the adviser. These include but are not limited to: EAEE E4900, CHEE E4252, CIEE E4252, EAEE E4257, ELEN E4004, EAEE E4160, EAEE E4300, EAEE E6132, EAEE E6140, EAEE E6150, EAEE E6212. Although not required, interested students may choose to complete up to six credits in EAEE E9309.

Essential Policies regarding the Engineer of Mines Program

Doctoral Programs

EEE offers two doctoral degrees: (1) the Eng.Sc.D. degree, administered by Columbia Engineering; and (2) the Ph.D. degree, administered by the Graduate School of Arts and Sciences.

Doctoral Qualifying Examination and Research Proposal

Before the end of the first semester in the doctoral program, the student and her/his adviser will set up an advisory committee of two or three faculty members. This committee will meet at least once a semester to assess academic and research progress of the student and to recommend corrective action in case of emerging or existing deficiencies.

Doctoral students are required to pass a qualifying exam soon after the completion of their first year into the program (spring or fall). They will submit and defend their research proposal approximately one year after successful completion of the qualifying exam. Submission of the dissertation and thesis defense will follow general University rules.

The qualifying examination will be an oral exam administered by three faculty members. The adviser of the student will be a member of the exam committee but may not be the chair. The students will be examined in their understanding of fundamentals as they apply in the four general areas of research of the department: water resources, materials processing, energy, and chemical and biochemical processes. It is expected that each question period will last about 20 minutes, of which 15 minutes will be led by the faculty member from the area and the remaining 5 minutes will be open for questions by all faculty present at the exam. There will be a final period of 20 minutes for general questions.

All graduate students are expected to have a background equivalent to the required core of our undergraduate program. They have, of course, an opportunity to make up for any deficiency in their master’s program. In order to be prepared for the exam, students can take at least one course in each core area during their first two semesters at Columbia (see website for up-to-date course listing). In case the student declares an explicit minor in another department, the qualifying exam requirements will be modified in consultation with the graduate committee. The minor has to be approved by both departments.

The engineering objectives of EEE research and education include:

  • Provision and disposal of materials: environmentally sustainable extraction and processing of primary materials; manufacturing of derivative products; recycling of used materials; management of industrial residues and used products; materials-related application of industrial ecology.
  • Management of water resources: understanding, prediction, and management of the processes that govern the quantity and quality of water resources, including the role of climate; development/operation of water resource facilities; management of water-related hazards.
  • Energy resources and carbon management: mitigation of environmental impacts of energy production; energy recovery from waste materials; advancement of energy efficient systems; new energy sources; development of carbon sequestration strategies.
  • Sensing and remediation: understanding of transport processes at different scales and in different media; containment systems; modeling flow and transport in surface and subsurface systems; soil/water decontamination and bioremediation.