Unify Course Listings

In the listing below, the designator COMS (Computer Science) is understood to precede all course numbers for which no designator is indicated.

NOTE: Students may receive credit for only one of the following two courses: COMS W1004 and W1005. Likewise students may receive credit for only one of the following three courses: COMS W3134, W3136, or W3137.


COMS W1001x and y Introduction to Information Science 3 pts. Basic introduction to concepts and skills in Information Sciences: human-computer interfaces, representing information digitally, organizing and searching information on the World Wide Web, principles of algorithmic problem solving, introduction to database concepts, and introduction to programming in Python.

COMS W1002y Computing in Context 4 pts. Introduction to elementary computing concepts and Python programming with domain-specific applications. Shared CS concepts and Python programming lectures with track-specific sections. Track themes will vary but may include computing for the social sciences, computing for economics and finance, digital humanities, and more. Intended for nonmajors. Students may only receive credit for one of ENGI E1006 and COMS W1002.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS W1002
COMS
1002
14318
001
TuTh 2:40p - 3:55p
TBA
A. Cannon 86 / 86 [ More Info ]

COMS W1004x and y Introduction to Computer Science and Programming in Java 3 pts. A general introduction to computer science for science and engineering students interested in majoring in computer science or engineering. Covers fundamental concepts of computer science, algorithmic problem-solving capabilities, and introductory Java programming skills. Assumes no prior programming background. Columbia University students may receive credit for only one of the following two courses: W1004 and W1005.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W1004
COMS
1004
26477
001
TuTh 5:40p - 6:55p
417 INTERNATIONAL AFFAIRS BLDG
A. Cannon 307 / 400 [ More Info ]
Autumn 2016 :: COMS W1004
COMS
1004
62478
001
TuTh 5:40p - 6:55p
TBA
A. Cannon 197 / 398 [ More Info ]

COMS W1005x and y Introduction to Computer Science and Programming in MATLAB 3 pts. A general introduction to computer science concepts, algorithmic problem-solving capabilities, and programming skills in MATLAB. Assumes no prior programming background. Columbia University students may receive credit for only one of the following two courses: W1004 and W1005.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS W1005
COMS
1005
10312
001
MW 1:10p - 2:25p
TBA
P. Blaer 54 / 54 [ More Info ]

ENGI E1006x and y Introduction to Computing for Engineers and Applied Scientists 3 pts. An interdisciplinary course in computing intended for first year SEAS students. Introduces computational thinking, algorithmic problem solving and Python programming with applications in science and engineering. Assumes no prior programming background.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: ENGI E1006
ENGI
1006
26739
001
TuTh 8:40a - 9:55a
417 INTERNATIONAL AFFAIRS BLDG
A. Cannon 185 / 250 [ More Info ]
Autumn 2016 :: ENGI E1006
ENGI
1006
73245
001
MW 2:40p - 3:55p
TBA
A. Salleb-Aouissi 74 / 189 [ More Info ]

COMS W1007x Honors Introduction to Computer Science 3 pts. Prerequisites: AP Computer Science with a grade of 4 or 5 or similar experience. An honors-level introduction to computer science, intended primarily for students considering a major in computer science. Computer science as a science of abstraction. Creating models for reasoning about and solving problems. The basic elements of computers and computer programs. Implementing abstractions using data structures and algorithms. Taught in Java.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS W1007
COMS
1007
75547
001
TuTh 1:10p - 2:25p
TBA
J. Kender 12 / 86 [ More Info ]

COMS W1404x and y Emerging Scholars Program Seminar 1-1 pts. Pass/Fail only. Prerequisites: the instructor's permission. Corequisites: COMS W1004/COMS W1007 or ENGI E1006. Peer-led weekly seminar intended for first and second year undergraduates considering a major in Computer Science. Pass/fail only. May not be used towards satisfying the major or SEAS credit requirements.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W1404
COMS
1404
64732
001
TBA A. Cannon 45 [ More Info ]
Autumn 2016 :: COMS W1404
COMS
1404
13954
001
TBA A. Cannon 1 [ More Info ]

ECBM E3060x Introduction to Genomic Information Science and Technology 3 pts. Lect: 3. Introduction to the information system paradigm of molecular biology. Representation, organization, structure, function and manipulation of the biomolecular sequences of nucleic acids and proteins. The role of enzymes and gene regulatory elements in natural biological functions as well as in biotechnology and genetic engineering. Recombination and other macromolecular processes viewed as mathematical operations with simulation and visualization using simple computer programming. This course shares lectures with ECBM E4060, but the work requirements differ somewhat.

COMS W3101x and y Programming Languages 1 pt. Prerequisites: fluency in at least one programming language. Introduction to a programming language. Each section is devoted to a specific language. Intended only for those who are already fluent in at least one programming language. Sections may meet for one hour per week for the whole term, for three hours per week for the first third of the term, or for two hours per week for the first six weeks. May be repeated for credit if different languages are involved.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W3101
COMS
3101
23319
001
F 2:10p - 4:00p
329 PUPIN LABORATORIES
L. Stead 51 / 60 [ More Info ]
COMS
3101
96848
002
Tu 6:10p - 8:00p
327 SEELEY W. MUDD BUILDING
R. Isukapalli 31 / 45 [ More Info ]
COMS
3101
78757
003
W 8:10p - 10:00p
1127 SEELEY W. MUDD BUILDING
T. Paine 19 / 60 [ More Info ]

COMS W3102x and y Development Technologies 1-2 pts. Lab Hours: 0 - 2Not offered in 2016-2017. Prerequisites: Fluency in at least one programming language Introduction to software development tools and environments. Each section devoted to a specific tool or environment. One-point sections meet for two hours each week for half a semester and two point sections include an additional two-hour lab.

COMS W3134x and y Data Structures in Java 3 pts. Prerequisites: COMS W1004 or knowledge of Java. Data types and structures: arrays, stacks, singly and doubly linked lists, queues, trees, sets, and graphs. Programming techniques for processing such structures: sorting and searching, hashing, garbage collection. Storage management. Rudiments of the analysis of algorithms. Taught in Java. Note: Due to significant overlap, students may receive credit for only one of the following three courses: COMS W3134, COMS W3136, COMS W3137.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W3134
COMS
3134
23082
001
MW 5:40p - 6:55p
417 INTERNATIONAL AFFAIRS BLDG
P. Blaer 282 / 300 [ More Info ]
COMS
3134
89038
002
MW 1:10p - 2:25p
486 COMPUTER SCIENCE BLDG
D. Bauer 44 / 60 [ More Info ]
Autumn 2016 :: COMS W3134
COMS
3134
73677
001
MW 5:40p - 6:55p
TBA
P. Blaer 230 / 398 [ More Info ]

COMS W3136y Data Structures with C/C++ 4-4 pts. Prerequisites: COMS W1004, W1005, W1007, or ENGI E1006. A second programming course intended for nonmajors with at least one semester of introductory programming experience. Basic elements of programming in C and C++, arraybased data structures, heaps, linked lists, C programming in UNIX environment, object-oriented programming in C++, trees, graphs, generic programming, hash tables. Due to significant overlap, students may only receive credit for either COMS W3134, W3136, or W3137.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS W3136
COMS
3136
12003
001
TuTh 4:10p - 5:25p
TBA
J. Lee 59 / 123 [ More Info ]

COMS W3137y Honors Data Structures and Algorithms 4 pts. Prerequisites: COMS W1004 or W1007. Corequisites: COMS W3203. An honors introduction to data types and structures: arrays, stacks, singly and doubly linked lists, queues, trees, sets, and graphs. Programming techniques for processing such structures: sorting and searching, hashing, garbage collection. Storage management. Design and analysis of algorithms. Taught in Java. Note: Due to significant overlap, students may receive credit for only one of the following three courses: COMS W3134, W3136, or W3137.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W3137
COMS
3137
64242
001
MW 1:10p - 2:25p
313 FAYERWEATHER
P. Blaer 55 / 120 [ More Info ]

COMS W3157x and y Advanced Programming 4 pts. Prerequisites: two semesters of programming experience. Practical, hands-on introduction to programming techniques and tools for professional software construction, including learning how to write code to given specifications as well as document the results. Provides introductory overview of C and C++ in a UNIX environment, for students with Java background. Also introduces scripting languages (perl) and basic web programming. UNIX programming utilities are also covered. Lab Required.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W3157
COMS
3157
17570
001
TuTh 4:10p - 5:25p
309 HAVEMEYER HALL
J. Lee 188 / 260 [ More Info ]
Autumn 2016 :: COMS W3157
COMS
3157
77230
001
TuTh 11:40a - 12:55p
TBA
J. Lee 267 / 272 [ More Info ]

COMS W3203x and y Discrete Mathematics: Introduction to Combinatorics and Graph Theory 3 pts. Prerequisites: any introductory course in computer programming. Logic and formal proofs, sequences and summation, mathematical induction, binomial coefficients, elements of finite probability, recurrence relations, equivalence relations and partial orderings, and topics in graph theory (including isomorphism, traversability, planarity, and colorings).

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W3203
COMS
3203
60992
001
TuTh 1:10p - 2:25p
329 PUPIN LABORATORIES
E. Grinspun 101 / 100 [ More Info ]
COMS
3203
75210
002
MW 10:10a - 11:25a
136 THOMPSON HALL (TC)
A. Salleb-Aouissi 133 / 150 [ More Info ]
Autumn 2016 :: COMS W3203
COMS
3203
27188
001
MW 10:10a - 11:25a
TBA
A. Salleb-Aouissi 147 / 147 [ More Info ]
COMS
3203
61896
002
MW 4:10p - 5:25p
TBA
J. Ouyang 0 / 54 [ More Info ]

COMS W3210y Scientific Computation 3 pts. Prerequisites: two terms of calculus. Introduction to computation on digital computers. Design and analysis of numerical algorithms. Numerical solution of equations, integration, recurrences, chaos, differential equations. Introduction to Monte Carlo methods. Properties of floating point arithmetic. Applications to weather prediction, computational finance, computational science, and computational engineering.

COMS W3251x Computational Linear Algebra 3 pts. Prerequisites: two terms of calculus. Computational linear algebra, solution of linear systems, sparse linear systems, least squares, eigenvalue problems, and numerical solution of other multivariate problems as time permits.

COMS W3261x and y Computer Science Theory 3 pts. Prerequisites: COMS W3203. Corequisites: COMS W3134, W3136, or W3137. Regular languages: deterministic and non-deterministic finite automata, regular expressions. Context-free languages: context-free grammars, push-down automata. Turing machines, the Chomsky hierarchy, and the Church-Turing thesis. Introduction to Complexity Theory and NP-Completeness.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W3261
COMS
3261
73071
001
TuTh 11:40a - 12:55p
833 SEELEY W. MUDD BUILDING
M. Yannakakis 117 / 120 [ More Info ]
Autumn 2016 :: COMS W3261
COMS
3261
71023
001
MW 1:10p - 2:25p
TBA
A. Aho 110 / 110 [ More Info ]

COMS W3410y Computers and Society 3 pts. Broader impact of computers. Social networks and privacy. Employment,intellectual property, and the media. Science and engineering ethics. Suitable for non-majors.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W3410
COMS
3410
68546
001
MW 2:40p - 3:55p
501 NORTHWEST CORNER
S. Bellovin 89 / 150 [ More Info ]

CSEE W3827x and y Fundamentals of Computer Systems 3 pts. Lect: 3. Prerequisites: an introductory programming course. Fundamentals of computer organization and digital logic. Boolean algebra, Karnaugh maps, basic gates and components, flipflops and latches, counters and state machines, basics of combinational and sequential digital design. Assembly language, instruction sets, ALU's, single-cycle and multi-cycle processor design, introduction to pipelined processors, caches, and virtual memory.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: CSEE W3827
CSEE
3827
18565
001
TuTh 8:40a - 9:55a
501 SCHERMERHORN HALL
M. Kim 166 / 214 [ More Info ]
Autumn 2016 :: CSEE W3827
CSEE
3827
21533
001
TuTh 10:10a - 11:25a
TBA
M. Kim 164 / 164 [ More Info ]

COMS W3902x and y Undergraduate Thesis 1-6 pts. Prerequisites: agreement by a faculty member to serve as thesis adviser. An independent theoretical or experimental investigation by an undergraduate major of an appropriate problem in computer science carried out under the supervision of a faculty member. A formal written report is mandatory and an oral presentation may also be required. May be taken over more than one term, in which case the grade is deferred until all 6 points have been completed. Consult the department for section assignment.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W3902
COMS
3902
60943
001
TBA Instructor To Be Announced 0 / 10 [ More Info ]
COMS
3902
28286
071
TBA S. Jana 0 [ More Info ]
Autumn 2016 :: COMS W3902
COMS
3902
60901
001
TBA Instructor To Be Announced 0 [ More Info ]

COMS W3995x or y Special Topics in Computer Science 3 pts. Prerequisites: the instructor's permission. Consult the department for section assignment. Special topics arranged as the need and availability arise. Topics are usually offered on a one-time basis. Since the content of this course changes each time it is offered, it may be repeated for credit.

COMS W3998x and y Undergraduate Projects in Computer Science 1-3 pts. Prerequisites: approval by a faculty member who agrees to supervise the work. Independent project involving laboratory work, computer programming, analytical investigation, or engineering design. May be repeated for credit, but not for a total of more than 3 points of degree credit. Consult the department for section assignment.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W3998
COMS
3998
62286
001
TBA Instructor To Be Announced 0 / 10 [ More Info ]
Autumn 2016 :: COMS W3998
COMS
3998
62446
001
TBA Instructor To Be Announced 0 [ More Info ]

ECBM E4060x Introduction to Genomic Information 3 pts. Lect: 3. Introduction to the information system paradigm of molecular biology. Representation, organization, structure, function, and manipulation of the biomolecular sequences of nucleic acids and proteins. The role of enzymes and gene regulatory elements in natural biological functions as well as in biotechnology and genetic engineering. Recombination and other macromolecular processes viewed as mathematical operations with simulation and visualization using simple computer programming. This course shares lectures with ECBM E3060, but the work requirements differ somewhat.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: ECBM E4060
ECBM
4060
63844
001
M 7:00p - 9:30p
TBA
D. Anastassiou 17 / 80 [ More Info ]

COMS W4111x and y Introduction to Databases 3 pts. Prerequisites: COMS W3134, W3136, or W3137, fluency in Java; or the instructor's permission. The fundamentals of database design and application development using databases: entity-relationship modeling, logical design of relational databases, relational data definition and manipulation languages, SQL, XML, query processing, physical database tuning, transaction processing, security. Programming projects are required.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W4111
COMS
4111
73266
001
TuTh 2:40p - 3:55p
501 NORTHWEST CORNER
L. Gravano 156 / 155 [ More Info ]
COMS
4111
26781
002
TuTh 8:40a - 9:55a
209 HAVEMEYER HALL
E. Jones 104 / 100 [ More Info ]
COMS
4111
62197
003
W 4:10p - 6:40p
1127 SEELEY W. MUDD BUILDING
A. Biliris 78 / 80 [ More Info ]
Autumn 2016 :: COMS W4111
COMS
4111
25522
001
MW 2:40p - 3:55p
TBA
E. Wu 54 / 55 [ More Info ]
COMS
4111
87002
002
W 4:10p - 6:40p
TBA
A. Biliris 0 / 80 [ More Info ]

COMS W4112y Database System Implementation 3 pts. Prerequisites: COMS W4111; fluency in Java or C++. CSEE W3827 is recommended. The principles and practice of building large-scale database management systems. Storage methods and indexing, query processing and optimization, materialized views, transaction processing and recovery, object-relational databases, parallel and distributed databases, performance considerations. Programming projects are required.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W4112
COMS
4112
73884
001
MW 1:10p - 2:25p
614 SCHERMERHORN HALL
K. Ross 72 / 100 [ More Info ]

COMS W4113x Fundamentals of Large-Scale Distributed Systems 3 pts. Prerequisites: COMS W3134, W3136, or W3137. COMS W3157 or good working knowledge of C and C++. COMS W4118 or CSEE W4119. Design and implementation of large-scale distributed and cloud systems. Teaches abstractions, design and implementation techniques that enable the building of fast, scalable, fault-tolerant distributed systems. Topics include distributed communication models (e.g., sockets, remote procedure calls, distributed shared memory), distributed synchronization (clock synchronization, logical clocks, distributed mutex), distributed file systems, replication, consistency models, fault tolerance, distributed transactions, agreement and commitment, Paxos-based consensus, MapReduce infrastructures, scalable distributed databases. Combines concepts and algorithms with descriptions of real-world implementations at Google, Facebook, Yahoo, Microsoft, LinkedIn, etc.

COMS W4115x and y Programming Languages and Translators 3 pts. Prerequisites: COMS W3134, W3136, or W3137(or equivalent), W3261, and CSEE W3827, or the instructor's permission. Modern programming languages and compiler design. Imperative, object-oriented, declarative, functional, and scripting languages. Language syntax, control structures, data types, procedures and parameters, binding, scope, run-time organization, and exception handling. Implementation of language translation tools including compilers and interpreters. Lexical, syntactic and semantic analysis; code generation; introduction to code optimization. Teams implement a language and its compiler.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W4115
COMS
4115
26909
001
MW 2:40p - 3:55p
209 HAVEMEYER HALL
S. Edwards 84 / 120 [ More Info ]
Autumn 2016 :: COMS W4115
COMS
4115
23391
001
MW 4:10p - 5:25p
TBA
S. Edwards 79 / 80 [ More Info ]

COMS W4117x or y Compilers and Interpreters 3 pts. Prerequisites: COMS W4115 or the instructor's permission. Continuation of COMS W4115, with broader and deeper investigation into the design and implementation of contemporary language translators, be they compilers or interpreters. Topics include: parsing, semantic analysis, code generation and optimization, run-time environments, and compiler-compilers. A programming project is required.

COMS W4118x and y Operating Systems I 3 pts. Prerequisites: CSEE W3827 and knowledge of C and programming tools as covered in W3136, W3157, or W3101, or the instructor's permission. Design and implementation of operating systems. Topics include process management, process synchronization and interprocess communication, memory management, virtual memory, interrupt handling, processor scheduling, device management, I/O, and file systems. Case study of the UNIX operating system. A programming project is required.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W4118
COMS
4118
64016
001
TuTh 8:40a - 9:55a
501 NORTHWEST CORNER
J. Lee 137 / 150 [ More Info ]
COMS
4118
71480
D01
TBA J. Yang
M. Aligbe
3 [ More Info ]
Autumn 2016 :: COMS W4118
COMS
4118
64953
001
TuTh 1:10p - 2:25p
TBA
J. Nieh 110 / 110 [ More Info ]

CSEE W4119x and y Computer Networks 3 pts. Lect: 3. Corequisites: SIEO W3600 or IEOR E3658, or equivalent. Introduction to computer networks and the technical foundations of the Internet, including applications, protocols, local area networks, algorithms for routing and congestion control, security, elementary performance evaluation. Several written and programming assignments required.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: CSEE W4119
CSEE
4119
21826
001
F 1:10p - 3:40p
207 MATHEMATICS BUILDING
H. Schulzrinne 110 / 150 [ More Info ]
Autumn 2016 :: CSEE W4119
CSEE
4119
15529
001
TuTh 1:10p - 2:25p
TBA
D. Rubenstein 123 / 123 [ More Info ]

COMS W4121x Computer Systems for Data Science 3 pts. Prerequisites: background in Computer System Organization and good working knowledge of C/C++ Corequisites: CSOR 4246(Algorithms for Data Science), STATS W4105(Probability), or equivalent as approved by faculty advisor. An introduction to computer architecture and distributed systems with an emphasis on warehouse scale computing systems. Topics will include fundamental tradeoffs in computer systems, hardware and software techniques for exploiting instruction-level parallelism, data-level parallelism and task level parallelism, scheduling, caching, prefetching, network and memory architecture, latency and throughput optimizations, specialization, and an introduction to programming data center computers.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W4121
COMS
4121
19266
001
W 6:00p - 8:30p
413 KENT HALL
E. Wu
R. Geambasu
S. Sahu
79 / 75 [ More Info ]

COMS W4130x Principles and Practice of Parallel Programming 3 pts. Prerequisites: experience in Java, basic understanding of analysis of algorithms. COMS W3134, W3136, or W3137(or equivalent). Principles of parallel software design. Topics include task and data decomposition, load-balancing, reasoning about correctness, determinacy, safety, and deadlock-freedom. Application of techniques through semester-long design project implementing performant, parallel application in a modern parallel programming language.

CSEE W4140x or y Networking Laboratory 3 pts. Lect: 3. Prerequisites: CSEE 4119 or equivalent In this course, students will learn how to put "principles into practice," in a hands-on-networking lab course. The course will cover the technologies and proctocols of the internet using equipment currently available to large internet service providers such as CISCO routers and end-systems. A set of laboratory experiments will provide hands-on experience with engineering wide-area networks and will familiarize students with the Internet Protocol (IP), Address Resolution Protocal (ARP), Internet Control Message Protocol (ICMP), User Datagram Protocol (UDP) and Transmission Control Protocol (TCP), the Domain Name System (DNS), routing protocols (RIP, OSPF, BGP), network management protocols (SNMP, and application-level protocols (FTP, TELNET, SMTP).

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: CSEE W4140
CSEE
4140
24870
001
W 10:10a - 11:25a
337 SEELEY W. MUDD BUILDING
G. Zussman 14 / 32 [ More Info ]
Autumn 2016 :: CSEE W4140
CSEE
4140
26450
001
W 10:10a - 11:25a
TBA
G. Zussman 23 / 32 [ More Info ]

COMS W4156x Advanced Software Engineering 3 pts. Prerequisites: substantial software development experience in Java, C++ or C# beyond the level of COMS W3157. Corequisites: Recommended: COMS W4111. Software lifecycle from the viewpoint of designing and implementing N-tier applications (typically utilizing web browser, web server, application server, database). Major emphasis on quality assurance (code inspection, unit and integration testing, security and stress testing). Centers on a student-designed team project that leverages component services (e.g., transactions, resource pooling, publish/subscribe) for an interactive multi-user application such as a simple game.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS W4156
COMS
4156
18845
001
TuTh 10:10a - 11:25a
TBA
G. Kaiser 114 / 60 [ More Info ]

COMS W4160y Computer Graphics 3 pts. Prerequisites: COMS W3134, W3136, or W3137; W4156 is recommended. Strong programming background and some mathematical familiarity including linear algebra is required. Introduction to computer graphics. Topics include 3D viewing and projections, geometric modeling using spline curves, graphics systems such as OpenGL, lighting and shading, and global illumination. Significant implementation is required: the final project involves writing an interactive 3D video game in OpenGL.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W4160
COMS
4160
67061
001
Th 6:10p - 8:00p
486 COMPUTER SCIENCE BLDG
M. Reed 62 / 70 [ More Info ]

COMS W4162x or y Advanced Computer Graphics 3 pts. Prerequisites: COMS W4160 or equivalent, or the instructor's permission. A second course in computer graphics covering more advanced topics including image and signal processing, geometric modeling with meshes, advanced image synthesis including ray tracing and global illumination, and other topics as time permits. Emphasis will be placed both on implementation of systems and important mathematical and geometric concepts such as Fourier analysis, mesh algorithms and subdivision, and Monte Carlo sampling for rendering. Note: Course will be taught every two years.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W4162
COMS
4162
25541
001
MW 2:40p - 3:55p
486 COMPUTER SCIENCE BLDG
C. Zheng 10 / 60 [ More Info ]

COMS W4167x or y Computer Animation 3 pts. Prerequisites: multivariable calculus, linear algebra, C++ programming proficiency. COMS W4156 recommended. Theory and practice of physics-based animation algorithms, including animated clothing, hair, smoke, water, collisions, impact, and kitchen sinks. Topics covered: Integration of ordinary differential equations, formulation of physical models, treatment of discontinuities including collisions/contact, animation control, constrained Lagrangian Mechanics, friction/dissipation, continuum mechanics, finite elements, rigid bodies, thin shells, discretization of Navier-Stokes equations.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS W4167
COMS
4167
24085
001
TuTh 2:40p - 3:55p
TBA
E. Grinspun 65 / 150 [ More Info ]

COMS W4170x User Interface Design 3 pts. Prerequisites: COMS W3134, W3136, or W3137. Introduction to the theory and practice of computer user interface design, emphasizing the software design of graphical user interfaces. Topics include basic interaction devices and techniques, human factors, interaction styles, dialogue design, and software infrastructure. Design and programming projects are required.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS W4170
COMS
4170
26008
001
TuTh 1:10p - 2:25p
TBA
S. Feiner 50 / 50 [ More Info ]

COMS W4172y 3D User Interfaces and Augmented Reality 3 pts. Prerequisites: COMS W4160, COMS W4170, or the instructor's permission. Design, development, and evaluation of 3D user interfaces. Interaction techniques and metaphors, from desktop to immersive. Selection and manipulation. Travel and navigation. Symbolic, menu, gestural, and multimodal interaction. Dialogue design. 3D software support. 3D interaction devices and displays. Virtual and augmented reality. Tangible user interfaces. Review of relevant 3D math.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W4172
COMS
4172
72941
001
TuTh 1:10p - 2:25p
486 COMPUTER SCIENCE BLDG
S. Feiner 48 / 50 [ More Info ]

COMS W4180x or y Network Security 3 pts. Prerequisites: COMS W3134, W3136, or W3137 and W4119, or the instructor's permission. Introduction to network security concepts and mechanisms. Foundations of network security and an in-depth review of commonly-used security mechanisms and techniques, security threats and network-based attacks, applications of cryptography, authentication, access control, intrusion detection and response, security protocols (IPsec, SSL, Kerberos), denial of service, viruses and worms, software vulnerabilities, web security, wireless security, and privacy.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W4180
COMS
4180
15784
001
F 10:10a - 12:40p
1127 SEELEY W. MUDD BUILDING
D. Cook 33 / 65 [ More Info ]

COMS W4187x or y Security Architecture and Engineering 3 pts. Prerequisites: COMS W4118; W4180 and/or W4119 recommended. Secure programming. Cryptograhic engineering and key handling. Access controls. Tradeoffs in security design. Design for security.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS W4187
COMS
4187
68604
001
MW 2:40p - 3:55p
TBA
S. Bellovin 55 / 55 [ More Info ]

COMS W4203y Graph Theory 3 pts. Prerequisites: COMS W3203. General introduction to graph theory. Isomorphism testing, algebraic specification, symmetries, spanning trees, traversability, planarity, drawings on higher-order surfaces, colorings, extremal graphs, random graphs, graphical measurement, directed graphs, Burnside-Polya counting, voltage graph theory.

CSOR W4231x Analysis of Algorithms I 3 pts. Prerequisites: COMS W3134, W3136, or W3137, and W3203. Introduction to the design and analysis of efficient algorithms. Topics include models of computation, efficient sorting and searching, algorithms for algebraic problems, graph algorithms, dynamic programming, probabilistic methods, approximation algorithms, and NP-completeness.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: CSOR W4231
CSOR
4231
69630
001
TuTh 7:10p - 8:25p
309 HAVEMEYER HALL
A. Lewko 127 / 250 [ More Info ]
CSOR
4231
91303
002
TuTh 5:40p - 6:55p
833 SEELEY W. MUDD BUILDING
E. Drinea 90 / 100 [ More Info ]
Autumn 2016 :: CSOR W4231
CSOR
4231
69378
001
TuTh 11:40a - 12:55p
TBA
M. Yannakakis 74 / 75 [ More Info ]
CSOR
4231
60133
002
TuTh 5:40p - 6:55p
TBA
A. Andoni 39 / 75 [ More Info ]

COMS W4236y Introduction to Computational Complexity 3 pts. Prerequisites: COMS W3261. Develops a quantitative theory of the computational difficulty of problems in terms of the resources (eg. time, space) needed to solve them. Classification of problems into complexity classes, reductions, and completeness. Power and limitations of different modes of computation such as nondeterminism, randomization, interaction, and parallelism.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS W4236
COMS
4236
70363
001
TuTh 7:10p - 8:25p
TBA
X. Chen 19 / 20 [ More Info ]

COMS W4241y Numerical Algorithms and Complexity 3 pts. Prerequisites: knowledge of a programming language. Some knowledge of scientific computation is desirable. Modern theory and practice of computation on digital computers. Introduction to concepts of computational complexity. Design and analysis of numerical algorithms. Applications to computational finance, computational science, and computational engineering.

CSOR W4246x Algorithms for Data Science 3 pts. Prerequisites: basic knowledge in programming (e.g., at the level of COMS W1007), a basic grounding in calculus and linear algebra. Methods for organizing data, e.g. hashing, trees, queues, lists,priority queues. Streaming algorithms for computing statistics on the data. Sorting and searching. Basic graph models and algorithms for searching, shortest paths, and matching. Dynamic programming. Linear and convex programming. Floating point arithmetic, stability of numerical algorithms, Eigenvalues, singular values, PCA, gradient descent, stochastic gradient descent, and block coordinate descent. Conjugate gradient, Newton and quasi-Newton methods. Large scale applications from signal processing, collaborative filtering, recommendations systems, etc.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: CSOR W4246
CSOR
4246
23325
001
TuTh 6:10p - 7:25p
TBA
E. Drinea 0 / 100 [ More Info ]
CSOR
4246
20955
002
TuTh 7:40p - 8:55p
TBA
E. Drinea 0 / 75 [ More Info ]

COMS W4252x or y Introduction to Computational Learning Theory 3 pts. Prerequisites: CSOR W4231 or COMS W4236 or COMS W3203 and the instructor's permission, or COMS W3261 and the instructor's permission. Possibilities and limitations of performing learning by computational agents. Topics include computational models of learning, polynomial time learnability, learning from examples and learning from queries to oracles. Computational and statistical limitations of learning. Applications to Boolean functions, geometric functions, automata.

COMS W4261x or y Introduction to Cryptography 3 pts. Prerequisites: comfort with basic discrete math and probability. Recommended: COMS W3261 or CSOR W4231. An introduction to modern cryptography, focusing on the complexity-theoretic foundations of secure computation and communication in adversarial environments; a rigorous approach, based on precise definitions and provably secure protocols. Topics include private and public key encryption schemes, digital signatures, authentication, pseudorandom generators and functions, one-way functions, trapdoor functions, number theory and computational hardness, identification and zero knowledge protocols.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS W4261
COMS
4261
70760
001
TuTh 10:10a - 11:25a
TBA
T. Malkin 55 / 43 [ More Info ]

COMS W4281x or y Introduction to Quantum Computing 3 pts. Prerequisites: knowledge of linear algebra. Prior knowledge of quantum mechanics is not required, although it is helpful. Introduction to quantum computing. Shor's factoring algorithm, Grover's database search algorithm, the quantum summation algorithm. Relationship between classical and quantum computing. Potential power of quantum computers.

EECS E4340x Computer Hardware Design 3 pts. Lect: 2. Prerequisites: ELEN E3331, plus ELEN E3910 or CSEE W3827. Practical aspects of computer hardware design through the implementation, simulation, and prototyping of a PDP-8 processor. High-level and assembly languages, I/O, interrupts, datapath and control design, piplelining, busses, memory architecture. Programmable logic and hardware prototyping with FPGAs. Fundamentals of VHDL for register-transfer level design. Testing and validation of hardware. Hands-on use of industry CAD tools for simulation and synthesis. Lab required.

COMS W4444x Programming and Problem Solving 3 pts. Prerequisites: COMS W3134, W3136, or W3137 and CSEE W3827. Hands-on introduction to solving open-ended computational problems. Emphasis on creativity, cooperation, and collaboration. Projects spanning a variety of areas within computer science, typically requiring the development of computer programs. Generalization of solutions to broader problems, and specialization of complex problems to make them manageable. Team-oriented projects, student presentations, and in-class participation required.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS W4444
COMS
4444
17221
001
MW 1:10p - 2:25p
TBA
K. Ross 0 / 42 [ More Info ]

COMS W4460y Principles of Innovation and Entrepreneurship 3 pts. Prerequisites: COMS W3134, W3136, or W3137(or equivalent), or the instructor's permission. Team project centered course focused on principles of planning, creating, and growing a technology venture. Topics include: indentifying and analyzing opportunities created by technology paradigm shifts, designing innovative products, protecting intellectual property, engineering innovative business models.

COMS W4560x Introduction to Computer Applications in Health Care and Biomedicine 3 pts. Prerequisites: experience with computers and a passing familiarity with medicine and biology. Undergraduates in their senior or junior years may take this course only if they have adequate background in mathematics and receive the instructor's permission. An overview of the field of biomedical informatics, combining perspectives from medicine, computer science and social science. Use of computers and information in health care and the biomedical sciences, covering specific applications and general methods, current issues, capabilities and limitations of biomedical informatics. Biomedical Informatics studies the organization of medical information, the effective management of information using computer technology, and the impact of such technology on medical research, education, and patient care. The field explores techniques for assessing current information practices, determining the information needs of health care providers and patients, developing interventions using computer technology, and evaluating the impact of those interventions.

COMS W4701x or y Artificial Intelligence 3 pts. Prerequisites: COMS W3134, W3136, or W3137. Provides a broad understanding of the basic techniques for building intelligent computer systems. Topics include state-space problem representations, problem reduction and and-or graphs, game playing and heuristic search, predicate calculus, and resolution theorem proving, AI systems and languages for knowledge representation, machine learning and concept formation and other topics such as natural language processing may be included as time permits.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS W4701
COMS
4701
88097
001
TuTh 7:30p - 8:45p
TBA
A. Salleb-Aouissi 0 / 120 [ More Info ]

COMS W4705x Natural Language Processing 3 pts. Prerequisites: COMS W3134, W3136, or W3137; or the instructor's permission. Computational approaches to natural language generation and understanding. Recommended preparation: some previous or concurrent exposure to AI or Machine Learning. Topics include information extraction, summarization, machine translation, dialogue systems, and emotional speech. Particular attention is given to robust techniques that can handle understanding and generation for the large amounts of text on the Web or in other large corpora. Programming exercises in several of these areas.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W4705
COMS
4705
67192
001
M 7:10p - 9:50p
329 PUPIN LABORATORIES
D. Radev 100 / 100 [ More Info ]

COMS W4706y Spoken Language Processing 3 pts. Prerequisites: COMS W3134, W3136, or W3137; or the instructor's permission. Computational approaches to speech generation and understanding. Topics include speech recognition and understanding, speech analysis for computational linguistics research, and speech synthesis. Speech applications including dialogue systems, data mining, summarization, and translation. Exercises involve data analysis and building a small text-to-speech system.

COMS W4731x or y Computer Vision 3 pts. Prerequisites: the fundamentals of calculus, linear algebra, and C programming. Students without any of these prerequisites are advised to contact the instructor prior to taking the course. Introductory course in computer vision. Topics include image formation and optics, image sensing, binary images, image processing and filtering, edge extraction and boundary detection, region growing and segmentation, pattern classification methods, brightness and reflectance, shape from shading and photometric stereo, texture, binocular stereo, optical flow and motion, 2-D and 3-D object representation, object recognition, vision systems and applications.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS W4731
COMS
4731
10153
001
TuTh 10:10a - 11:25a
TBA
S. Nayar 48 / 50 [ More Info ]

COMS W4733x or y Computational Aspects of Robotics 3 pts. Prerequisites: COMS W3134, W3136, or W3137. Introduction to robotics from a computer science perspective. Topics include coordinate frames and kinematics, computer architectures for robotics, integration and use of sensors, world modeling systems, design and use of robotic programming languages, and applications of artificial intelligence for planning, assembly, and manipulation.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS W4733
COMS
4733
10486
001
TuTh 11:40a - 12:55p
TBA
P. Allen 53 / 55 [ More Info ]

COMS W4735x or y Visual Interfaces to Computers 3 pts. Prerequisites: COMS W3134, W3136, or W3137. Visual input as data and for control of computer systems. Survey and analysis of architecture, algorithms, and underlying assumptions of commercial and research systems that recognize and interpret human gestures, analyze imagery such as fingerprint or iris patterns, generate natural language descriptions of medical or map imagery. Explores foundations in human psychophysics, cognitive science, and artificial intelligence.

COMS W4737x or y Biometrics 3 pts. Prerequisites: a background at the sophomore level in computer science, engineering, or like discipline. In this course. we will explore the latest advances in biometrics as well as the machine learning techniques behind them. Students will learn how these technologies work and how they are sometimes defeated. Grading will be based on homework assignments and a final project. There will be no midterm or final exam. This course shares lectures with COMS E6737. Students taking COMS E6737 are required to complete additional homework problems and undertake a more rigorous final project. Students will only be allowed to earn credit for COMS W4737 or COMS E6737 and not both.

CBMF W4761x or y Computational Genomics 3 pts. Lect: 3. Prerequisites: introductory probability and statistics and basic programming skills. Provides comprehensive introduction to computational techniques for analyzing genomic data including DNA, RNA and protein structures; microarrays; transcription and regulation; regulatory, metabolic and protein interaction networks. The course covers sequence analysis algorithms, dynamic programming, hidden Markov models, phylogenetic analysis, Bayesian network techniques, neural networks, clustering algorithms, support vector machines, Boolean models of regulatory networks, flux based analysis of metabolic networks and scale-free network models. The course provides self-contained introduction to relevant biological mechanisms and methods.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: CBMF W4761
CBMF
4761
26180
001
MW 4:10p - 5:25p
486 COMPUTER SCIENCE BLDG
I. Pe'er 30 / 55 [ More Info ]

COMS W4771y Machine Learning 3 pts. Prerequisites: any introductory course in linear algebra and any introductory course in statistics are both required. Highly recommended: COMS W4701 or knowledge of Artificial Intelligence. Topics from generative and discriminative machine learning including least squares methods, support vector machines, kernel methods, neural networks, Gaussian distributions, linear classification, linear regression, maximum likelihood, exponential family distributions, Bayesian networks, Bayesian inference, mixture models, the EM algorithm, graphical models and hidden Markov models. Algorithms implemented in Matlab.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W4771
COMS
4771
22286
001
TuTh 10:10a - 11:25a
1127 SEELEY W. MUDD BUILDING
S. Kale 77 / 80 [ More Info ]
Autumn 2016 :: COMS W4771
COMS
4771
72497
001
MW 1:10p - 2:25p
TBA
D. Hsu 47 / 50 [ More Info ]

COMS W4772x Advanced Machine Learning 3 pts. Prerequisites: COMS W4771 or the instructor's permission; knowledge of linear algebra & introductory probability or statistics is required. An exploration of advanced machine learning tools for perception and behavior learning. How can machines perceive, learn from, and classify human activity computationally? Topics include Appearance-Based Models, Principal and Independent Components Analysis, Dimensionality Reduction, Kernel Methods, Manifold Learning, Latent Models, Regression, Classification, Bayesian Methods, Maximum Entropy Methods, Real-Time Tracking, Extended Kalman Filters, Time Series Prediction, Hidden Markov Models, Factorial HMMS, Input-Output HMMs, Markov Random Fields, Variational Methods, Dynamic Bayesian Networks, and Gaussian/Dirichlet Processes. Links to cognitive science.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W4772
COMS
4772
29410
001
Th 12:10p - 2:00p
417 INTERNATIONAL AFFAIRS BLDG
A. Lozano
L. Horesh
101 / 100 [ More Info ]
Autumn 2016 :: COMS W4772
COMS
4772
63531
001
W 4:10p - 6:00p
TBA
D. Hsu 42 / 42 [ More Info ]

COMS W4776x Machine Learning for Data Science 3 pts. Lect.: 3 Prerequisites: SIEO W3600 or W4150 or equivalent. Introduction to machine learning, emphasis on data science. Topics include least square methods, Gaussian distributions, linear classification, linear regression, maximum likelihood, exponential family distributions, Bayesian networks, Bayesian inference, mixture models, the EM algorithm, graphical models, hidden Markov models, support vector machines kernel methods. Emphasizes methods and problems relevant to big data. Students may not receive credit for both COMS W4771 and W4776.

CSEE W4823x or y Advanced Logic Design 3 pts. Lect: 3. Prerequisites: CSEE W3827, or a half semester introduction to digital logic, or the equivalent. An introduction to modern digital system design. Advanced topics in digital logic: controller synthesis (Mealy and Moore machines); adders and multipliers; structured logic blocks (PLDs, PALs, ROMs); iterative circuits. Modern design methodology: register transfer level modelling (RTL); algorithmic state machines (ASMs); introduction to hardware description languages (VHDL or Verilog); system-level modelling and simulation; design examples.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: CSEE W4823
CSEE
4823
26323
001
TuTh 2:40p - 3:55p
TBA
S. Nowick 34 / 54 [ More Info ]

CSEE W4824x Computer Architecture 3 pts. Lect: 3. Prerequisites: CSEE W3827 or the equivalent. Focuses on advanced topics in computer architecture, illustrated by case studies from classic and modern processors. Fundamentals of quantitative analysis. Pipelining. Memory hierarchy design. Instruction-level and thread-level parallelism. Data-level parallelism and graphics processing units. Multiprocessors. Cache coherence. Interconnection networks. Multi-core processors and systems-on-chip. Platform architectures for embedded, mobile, and cloud computing.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: CSEE W4824
CSEE
4824
27988
001
Th 7:00p - 9:30p
329 PUPIN LABORATORIES
S. Sethumadhavan 49 / 120 [ More Info ]

CSEE W4840y Embedded Systems 3 pts. Lect: 3. Prerequisites: CSEE W4823. Embedded system design and implementation combining hardware and software. I/O, interfacing, and peripherals. Weekly laboratory sessions and term project on design of a microprocessor-based embedded system including at least one custom peripheral. Knowledge of C programming and digital logic required. Lab Required.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: CSEE W4840
CSEE
4840
15820
001
TuTh 2:40p - 3:55p
717 HAMILTON HALL
S. Edwards 63 / 80 [ More Info ]

CSEE W4868x System-on-Chip Platforms 3 pts.Not offered in 2016-2017. Prerequisites: COMS W3157 and CSEE W3827 Design and programming of System-on-Chip (SoC) platforms. Topics include: overview of technology and economic trends, methodologies and supporting CAD tools for system-level design, models of computation, the SystemC language, transaction-level modeling, software simulation and virtual platforms, hardware-software partitioning, high-level synthesis, system programming and device drivers, on-chip communication, memory organization, power management and optimization, integration of programmable processor cores and specialized accelerators. Case studies of modern SoC platforms for various classes of applications.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: CSEE W4868
CSEE
4868
22796
001
TuTh 11:40a - 12:55p
TBA
L. Carloni 23 / 50 [ More Info ]

COMS W4901x and y Projects in Computer Science 1-3 pts. Prerequisites: approval by a faculty member who agrees to supervise the work. A second-level independent project involving laboratory work, computer programming, analytical investigation, or engineering design. May be repeated for credit, but not for a total of more than 3 points of degree credit. Consult the department for section assignment.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W4901
COMS
4901
62598
001
TBA Instructor To Be Announced 0 / 10 [ More Info ]
Autumn 2016 :: COMS W4901
COMS
4901
62996
001
TBA Instructor To Be Announced 0 [ More Info ]

COMS W4910x and y Curricular Practical Training 1 pt. Prerequisites: obtained internship and approval from faculty advisor. Only for M.S. students in the Computer Science department who need relevant work experience as part of their program of study. Final report required. This course may not be taken for pass/fail credit or audited.

COMS W4995x or y Special Topics in Computer Science, I 3 pts. Prerequisites: the instructor's permission. Special topics arranged as the need and availability arises. Topics are usually offered on a one-time basis. Since the content of this course changes each time it is offered, it may be repeated for credit. Consult the department for section assignment.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS W4995
COMS
4995
17897
001
F 10:10a - 12:00p
253 ENGINEERING TERRACE
B. Stroustrup 30 / 30 [ More Info ]
Autumn 2016 :: COMS W4995
COMS
4995
12896
002
TuTh 5:40p - 6:55p
TBA
A. Chaintreau 46 / 50 [ More Info ]

COMS E6111y Advanced Database Systems 3 pts. Lect: 2. Prerequisites: COMS W4111 and knowledge of Java or the instructor's permission. Continuation of COMS W4111, covers latest trends in both database research and industry: information retrieval, web search, data mining, data warehousing, OLAP, decision support, multimedia databases, and XML and databases. Programming projects required.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Autumn 2016 :: COMS E6111
COMS
6111
28626
001
F 2:10p - 4:00p
TBA
L. Gravano 70 / 70 [ More Info ]

COMS E6113y Topics in Database Systems 3 pts. Lect: 2.Not offered in 2016-2017. Prerequisites: COMS W4111. Concentration on some database paradigm, such as deductive, heterogeneous, or object-oriented, and/or some database issue, such as data modeling, distribution, query processing, semantics, or transaction management. A substantial project is typically required. May be repeated for credit with instructor's permission.

COMS E6117x or y Topics in Programming Languages and Translators 3 pts. Lect: 2. Prerequisites: COMS W4115 or the instructor's permission. Concentration on the design and implementation of programming languages, and tools focused on advanced applications in new areas in software verification, distributed systems, programming in the large, and web computing. A substantial project is typically required. May be repeated for credit.

COMS E6118y Operating systems, II 3 pts. Lect: 2.Not offered in 2016-2017. Prerequisites: COMS W4118. Corequisites: COMS W4119. Continuation of COMS W4118, with emphasis on distributed operating systems. Topics include interfaces to network protocols, distributed run-time binding, advanced virtual memory issues, advanced means of interprocess communication, file system design, design for extensibility, security in a distributed environment. Investigation is deeper and more hands-on than in COMS W4118. A programming project is required.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E6118
COMS
6118
70790
001
Tu 10:10a - 12:00p
337 SEELEY W. MUDD BUILDING
J. Nieh 6 / 40 [ More Info ]

COMS E6121x Reliable Software 3 pts.Not offered in 2016-2017. Prerequisites: at least one of COMS W4118 Operating Systems I, COMS W4115 Programming Languages and Translators, or COMS W4117 Compilers and Interpreters; or significant software development experiences. Topics include: automated debugging, automated software repair, Concurrent software reliability, software error detection, and more.

COMS E6123x or y Programming Environments and Software Tools (PEST) 3 pts. Lect: 2. Prerequisites: COMS W4156, or equivalent. Software methodologies and technologies concerned with development and operation of today's software systems. Reliability, security, systems management and societal issues. Emerging software architectures such as enterprise and grid computing. Term paper and programming project. Seminar focus changes frequently to remain timely.

COMS E6125y Web-enhanced Information Management (WHIM) 3 pts. Lect: 2. Prerequisites: at least one COMS W41xx or COMS E61xx course and/or COMS W4444, or the instructor's permission. Strongly recommended: COMS W4111. History of hypertext, markup languages, groupware and the Web. Evolving Web protocols, formats and computation paradigms such as HTTP, XML and Web Services. Novel application domains enabled by the Web and societal issues. Term paper and programming project. Seminar focus changes frequently to remain timely.

COMS E6156y Topics in Software Engineering 3 pts. Topics in Software engineering arranged as the need and availability arises. Topics are usually offered on a one-time basis. Since the content of this course changes, it may be repeated for credit with advisor approval. Consult the department for section assignment.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E6156
COMS
6156
63009
001
TuTh 10:10a - 11:25a
1024 SEELEY W. MUDD BUILDING
G. Kaiser 47 / 60 [ More Info ]

COMS E6160x or y Topics in Computer Graphics 3 pts. Lect: 2. Prerequisites: COMS W4160 or the instructor's permission. An advanced graduate course, involving study of an advanced research topic in Computer Graphics. Content varies between offerings, and the course may be repeated for credit. Recent offerings have included appearance models in graphics, and high quality real-time rendering.

COMS E6174y Interaction Design: A Perceptual Approach 3 pts. Lect: 3. Prerequisites: COMS W4170 or the instructor's permission. Design methology for special-purpose user interfaces. Emphasis on how psychology and perception inform good design. Interviewing and task modeling, participatory design, and low-fidelilty prototyping. Applications of brain research, graphic design and art to develop custom user interfaces components, screen layouts, and interaction techniques for application-specific systems.

COMS E6176x or y User Interfaces for Mobile and Wearable Computing 3 pts. Lect: 2. Prerequisites: COMS W4170 or the instructor's permission. Introduction to research on user interfaces for mobile and wearable computing through lectures, invited talks, student-led discussions of important papers, and programming projects. Designing and authoring for mobility and wearability. Ubiquitous/pervasive computing. Collaboration with other users. Display, interaction, and communication technologies. Sensors for tracking position, orientation, motion, environmental context, and personal context. Applications and social consequences.

CSEE E6180x or y Modeling and Performance 3 pts. Lect: 2. Prerequisites: COMS W4118 and SIEO W4150. Introduction to queuing analysis and simulation techniques. Evaluation of time-sharing and multiprocessor systems. Topics include priority queuing, buffer storage, and disk access, interference and bus contention problems, and modeling of program behaviors.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: CSEE E6180
CSEE
6180
29781
001
Th 10:10a - 12:00p
524 SEELEY W. MUDD BUILDING
V. Misra 45 / 50 [ More Info ]

COMS E6181x or y Advanced Internet Services 3 pts. Lect: 2. In-depth survey of protocols and algorithms needed to transport multimedia information across the Internet, including audio and video encoding, multicast, quality-of-service, voice-over-IP, streaming media and peer-to-peer multimedia systems. Includes a semester-long programming project.

COMS E6183x or y Advanced Topics in Network Security 3 pts. Lect: 3. Prerequisites: COMS W4180, CSEE 4119, and COMS W4261 recommended. Review the fundamental aspects of security, including authentication, authorization, access control, confidentiality, privacy, integrity, and availability. Review security techniques and tools, and their applications in various problem areas. Study the state of the art in research. A programming project is required.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E6183
COMS
6183
73530
001
W 6:10p - 8:00p
486 COMPUTER SCIENCE BLDG
S. Jana 3 / 50 [ More Info ]

COMS E6184y Seminar on Anonymity and Privacy 3 pts. Lect: 3.Not offered in 2016-2017. Prerequisites: COMS W4261 or COMS W4180 or CSEE W4119, or the instructor's permission. This course will cover the following topics: Legal and social framework for privacy. Data mining and databases. Anonymous commerce and internet usage. Traffic analysis. Policy and national security considerations. Classes are seminars with students presenting papers and discussing them. Seminar focus changes frequently to remain timely.

COMS E6185x or y Intrusion and Anomaly Detection Systems 2 pts. Lect: 2. Prerequisites: COMS W4180 Network Security. Corequisites: COMS W4180 Network Security. The state of threats against computers, and networked systems. An overview of computer security solutions and why they fail. Provides a detailedtreatment for Network and Host-based Intrusion Detection and Intrusion Prevention systems. Considerable depth is provided on anomaly detection systems to detect new attacks. Covers issues and problems in email (spam, and viruses) and insider attacks (masquerading and impersonation).

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E6185
COMS
6185
65830
001
F 2:10p - 4:00p
253 ENGINEERING TERRACE
S. Stolfo 14 / 60 [ More Info ]

COMS E6204x or y Topics in Graph Theory 3 pts. Lect: 2. Prerequisites: COMS W4203 or the instructor's permission. Content varies from year to year. This course may be repeated for credit. Concentration on some aspect of graph theory, such as topological graph theory, algebraic graph theory, enumerative graph theory, graphical optimization problems, or matroids.

COMS E6206x or y Topics in Combinatorial Theory 3 pts. Lect: 2. Prerequisites: COMS W4203 or COMS W4205, or the instructor's permission. Concentration on some aspect of combinatorial theory. Content varies form year to year. This course may be repeated for credit.

COMS E6232x or y Analysis of Algorithms, II 3 pts. Lect: 2. Prerequisites: CSOR W4231. Continuation of CSOR W4231.

COMS E6253y Advanced Topics in Computational Learning Theory 3 pts. Lect: 3.Not offered in 2016-2017. Prerequisites: CSOR W4231 or equivalent, COMS W4252 or COMS W4236 helpful but not required. In-depth study of inherent abilities and limitations of computationally efficient learning algorithms. Algorithms for learning rich Boolean function classes in online, Probably Approximately Correct, and exact learning models. Connections with computational complexity theory emphasized. Substantial course project or term paper required.

COMS E6261x or y Advanced Cryptography 3 pts. Lect: 3. Prerequisites: COMS W4261. A study of advanced cryptographic research topics such as: secure computation, zero knowledge, privacy, anonymity, cryptographic protocols. Concentration on theoretical foundations, rigorous approach, and provable security. Contents varies between offerings. May be repeated for credit.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E6261
COMS
6261
65664
001
Tu 10:10a - 12:00p
253 ENGINEERING TERRACE
T. Malkin 17 / 60 [ More Info ]

COMS E6291x or y Theoretical Topics in Computer Science 3 pts. Lect: 3. Prerequisites: the instructor's permission. Concentration on some theoretical aspect of computer science. Content varies from year to year. May be repeated for credit.

COMS E6731y Humanoid Robots 3 pts. Prerequisites: A Course in at least One of the following: AI, Robotics, Computer Graphics, or Computer Vision Seminar on Humanoid Robots. Analysis of existing hardware and software platforms. Programming of multi-degree-of-freedom robots. Understanding sensor feedback in perceive-act-sense control paradigms. Task-level planning and reasoning. Final project includes implementing a humanoid robot task on either a simulated or physical robot.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E6731
COMS
6731
72946
001
Tu 4:10p - 6:00p
486 COMPUTER SCIENCE BLDG
P. Allen 26 / 40 [ More Info ]

COMS E6732x or y Computational Imaging 3 pts. Lect: 3. Prerequisites: COMS W4731 or the instructor's permission. Computational imaging uses a combination of novel imaging optics and a computational module to produce new forms of visual information. Survey of the state of art in computational imaging. Review of recent papers on: omni directional and panoramic imaging, catadioptric imaging, high dynamic range imaging, mosaicing and superresolution. Classes are seminars with the instructor, guest speakers, and students presenting papers and discussing them.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E6732
COMS
6732
70127
001
M 4:10p - 6:40p
750 SCHAPIRO CEPSER
S. Nayar 16 / 60 [ More Info ]

COMS E6733x or y 3 -D photography 3 pts. Lect: 2. Prerequisites: experience with at least one of the following topics: Computer Graphics, Computer Vision, Pixel Processing, Robotics or Computer Aided Design, or the instructor's permission. Programming proficiency in C, C++ or JAVA. Programming proficiency in C, C++ or JAVA. 3D Photography - the process of automatically creating 3D, texture-mapped models of objects in detail. Applications include robotics, medicine, graphics, virtual reality, entertainment and digital movies etc. Topics include 3D data acquisition devices, 3D modeling systems and algorithms to acquire, create, augment, manipulate, render, animate and physically build such models.

COMS E6734y Computational Photography 3 pts. Lect: 3. Prerequisites: COMS W4160, COMS W4731, or a working knowledge of photography are recommended. Students should have knowledge in any of three core areas: computer vision, computer graphics, or photography. Computational techniques are used to produce a new level of images and visual representations. Topics include: HDR imaging, feature matching using RANSAC, image mosaics, image-based rendering, motion magnification, camera lens arrays, programmable lighting, face detection, single and multi-view geometry, and more.

COMS E6735y Visual Databases 3 pts. Lect: 3.Not offered in 2016-2017. Prerequisites: COMS W3134 or COMS W3137 required. COMS W4731 and COMS W4735 helpful but not required. Contact instructor if uncertain. The analysis and retrieval of large collections of image and video data, with emphasis on visual semantics, human psychology, and user interfaces. Low-level processing: features and similarity measures; shot detection; key frame selection; machine learning methods for classification. Middle-level processing: organizational rules for videos, including unedited (home, educational), semi-edited (sports, talk shows), edited (news, drama); human memory limits; progressive refinement; visualization techniques; incorporation of audio and text. High-level processing: extraction of thematic structures; ontologies, semantic filters, and learning; personalization of summaries and interfaces; detection of pacing and emotions. Examples and demonstrations from commercial and research systems throughout. Substantial course project or term paper required.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E6735
COMS
6735
27448
001
Tu 10:10a - 12:00p
329 PUPIN LABORATORIES
J. Kender 42 / 100 [ More Info ]

COMS E6737x or y Biometrics 3 pts. Lect: 3. Prerequisites: a background at the sophomore level in computer science, engineering, or like discipline. In this course we will explore the latest advances in biometrics as well as the machine learning techniques behind them. Students will learn how these technologies work and how they are sometimes defeated. Grading will be based on homework assignments and a final project. There will be no midterm or final exam. This course shares lectures with COMS W4737. Students taking COMS E6737 are required to complete additional homework problems and undertake a more rigorous final project. Students will only be allowed to earn credit for COMS W4737 or COMS E6737 and not both.

CSEE E6824y Parallel Computer Architecture 3 pts. Lect: 2. Prerequisites: CSEE W4824. Parallel computer principles, machine organization and design of parallel systems including parallelism detection methods, synchronization, data coherence and interconnection networks. Performance analysis and special purpose parallel machines.

CSEE E6831y Sequential Logic Circuits 3 pts. Lect: 3.Not offered in 2016-2017. Prerequisites: CSEE W3827 or any introduction to logic circuits Generation and manipulation of flow table descriptions to asynchronous sequential functions. Coding of flow tables to satisfy various design criteria. Delays, races, hazards, metastability. Analysis of latches to determine key parameters. Bounds of input rates. Clocking schemes for synchronous systems. Synthesis of self-timed systems using 4-phase or 2-phase handshakes.

CSEE E6832x or y Topics in Logic Design Theory 3 pts. Lect: 3. Prerequisites: CSEE W3827 or any introduction to logic circuits. A list of topics for each offering of the course is available in the department office one month before registration. May be taken more than once if topics are different Iterative logic circuits applied to pattern recognition. Finite state machines; alternative representations, information loss, linear circuits, structure theory. Reliability and testability of digital systems.

CSEE E6847y Distributed Embedded Systems 3 pts. Lect: 2.Not offered in 2016-2017. Prerequisites: Any COMS W411X, CSEE W48XX or ELEN E43XX course, or the instructor's permission. An inter-disciplinary graduate-level seminar on the design of distributed embedded systems. System robustness in the presence of highly variable communication delays and heterogeneous component behaviors. The study of the enabling technologies (VLSI circuits, communication protocols, embedded processors, RTOSs), models of computation, and design methods. The analysis of modern domain-specific applications including on-chip micro-networks, multiprocessor systems, fault-tolerant architectures, and robust deployment of embedded software. Research challenges such as design complexity, reliability, scalability, safety, and security. The course requires substantial reading, class participation and a research project.

CSEE E6861y Computer-Aided Design of Digital Systems 3 pts. Lect: 2. Prerequisites: (i) one semester of advanced digital logic (CSEE 4823 or equivalent, or the instructor's permission); and (ii) a basic course in data structures and algorithms (COMS W3134, W3136, W3137, W3157, or equivalent, and familiarity with programming. Introduction to modern digital CAD synthesis and optimization techniques. Topics include: modern digital system design (high-level synthesis, register-transfer level modeling, algorithmic state machines, optimal scheduling algorithms, resource allocation and binding, retiming), controller synthesis and optimization, exact and heuristic two-level logic minimization, advanced multi-level logic optimization, optimal technology mapping to library cells (for delay, power and area minimization), advanced data structures (binary decision diagrams), SAT solvers and their applications, static timing analysis, and introduction to testability. Includes hands-on small design projects using and creating CAD tools.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: CSEE E6861
CSEE
6861
73734
001
Th 4:10p - 6:00p
627 SEELEY W. MUDD BUILDING
S. Nowick 21 / 50 [ More Info ]

EECS E6870x or y Speech Recognition 3 pts. Lect: 3. Prerequisites: basic probability and statistics. Theory and practice of contemporary automatic speech recognition. Gaussian mixture distributions, hidden Markov models, pronunciation modeling, decision trees, finite-state transducers, and language modeling. Selected advanced topics will be covered in more depth.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: EECS E6870
EECS
6870
29345
001
W 4:10p - 6:40p
833 SEELEY W. MUDD BUILDING
B. Ramabhadran
M. Nussbaum-Thom
M. Picheny
S. Chen
56 [ More Info ]

COMS E6900x and y Tutorial in Computer Science 1-3 pts. Prerequisites: the instructor's permission. A reading course in an advanced topic for a small number of students, under faculty supervision.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E6900
COMS
6900
67799
001
TBA Instructor To Be Announced 0 / 10 [ More Info ]
Autumn 2016 :: COMS E6900
COMS
6900
65949
001
TBA Instructor To Be Announced 0 [ More Info ]

COMS E6901x Projects in Computer Science 1-12 pts. Prerequisites: the instructor's permission. Software or hardware projects in computer science. Before registering, the student must submit a written proposal to the instructor for review. The proposal should give a brief outline of the project, estimated schedule of completion, and computer resources needed. Oral and written reports are required. May be taken over more than one semester, in which case the grade will be deferred until all 12 points have been completed. No more than 12 points of COMS E6901 may be taken. Consult the department for section assignment.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E6901
COMS
6901
72602
001
TBA Instructor To Be Announced 0 / 10 [ More Info ]
Autumn 2016 :: COMS E6901
COMS
6901
66651
001
TBA Instructor To Be Announced 0 [ More Info ]

COMS E6902x and y Thesis 1-9 pts. Available to MS and CSE candidates. An independent investigation of an appropriate problem in computer science carried out under the supervision of a faculty member. A formal written report is essential and an oral presentation may also be required. May be taken over more than one semester, in which case the grade will be deferred until all 9 points have beem completed. No more than 9 points of COMS E6902 may be taken. Consult the department for section assignment.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E6902
COMS
6902
77202
001
TBA Instructor To Be Announced 0 / 10 [ More Info ]
Autumn 2016 :: COMS E6902
COMS
6902
67248
001
TBA Instructor To Be Announced 0 [ More Info ]

COMS E6915y Writing for Computer Scientists and Engineers 1-1 pts. 5 week course Prerequisites: For M.S. and Ph.D candidates in CS/CE. Topics to help CS/CE graduate students' communication skills. Emphasis on writing, presenting clear, concise proposals, journal articles, conference papers, theses, and technical presentations. May be repeated for credit. Credit may not be used to satisfy degree requirements.

COMS E6998x and y Topics in Computer Science 3 pts. Prerequisites: Instructor's permission. Selected topics in computer science. Content varies from year to year. May be repeated for credit.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E6998
COMS
6998
10986
001
M 4:10p - 6:00p
253 ENGINEERING TERRACE
L. Carloni 7 / 40 [ More Info ]
COMS
6998
91246
002
F 12:00p - 2:30p
633 SEELEY W. MUDD BUILDING
D. Blei 26 / 40 [ More Info ]
COMS
6998
66315
003
M 6:10p - 8:00p
602 HAMILTON HALL
S. Sahu 74 / 60 [ More Info ]
COMS
6998
63248
004
W 6:10p - 8:00p
415 SCHAPIRO CEPSER
S. McGregor 35 / 42 [ More Info ]
COMS
6998
16014
D07
TBA L. Li 2 [ More Info ]
Autumn 2016 :: COMS E6998
COMS
6998
62880
001
F 12:10p - 2:00p
TBA
Y. Erlich 14 / 25 [ More Info ]
COMS
6998
65334
002
F 2:10p - 4:00p
TBA
I. Pe'er 5 / 25 [ More Info ]
COMS
6998
23456
003
F 2:10p - 4:00p
TBA
C. Zheng 17 / 25 [ More Info ]
COMS
6998
27250
004
Th 7:00p - 9:30p
TBA
H. Beigi 0 / 42 [ More Info ]

COMS E6999x and y Topics in Computer Science, II 3 pts. Prerequisites: COMS E6998. Continuation of COMS E6998.

COMS E9800x and y Directed Research in Computer Science 1-15 pts. Prerequisites: submission of an outline of the proposed research for approval by the faculty member who will supervise. The department must approve the number of points. May be repeated for credit. This course is only for Eng.Sc.D. candidates.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E9800
COMS
9800
82298
001
TBA Instructor To Be Announced 0 / 10 [ More Info ]
Autumn 2016 :: COMS E9800
COMS
9800
19262
001
TBA Instructor To Be Announced 0 / 0 [ More Info ]

COMS E9910x and y Graduate Research I 1-6 pts. Prerequisites: submission of an outline of the proposed research for approval by the faculty member who will supervise. The department must approve the number of credits. May be repeated for credit. This course is only for MS candidates holding GRA or TA appointments. Note: It is NOT required that a student take Graduate Research I prior to taking Graduate Research II. Consult the department for section assignment.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E9910
COMS
9910
85847
001
TBA Instructor To Be Announced 0 / 10 [ More Info ]
Autumn 2016 :: COMS E9910
COMS
9910
11793
001
TBA Instructor To Be Announced 0 / 0 [ More Info ]

COMS E9911x and y Graduate research II 1-15 pts. Prerequisites: submission of an outline of the proposed research for approval by the faculty member who will supervise. The department must approve the number of points. May be repeated for credit. This course is only for MS/PhD and PhD students. Note: It is NOT required that a student take Graduate Research I prior to taking Graduate Research II. Consult the department for section assignment.

Course
Number
Call Number/
Section
Days & Times/
Location
Instructor Enrollment
Spring 2016 :: COMS E9911
COMS
9911
88149
001
TBA Instructor To Be Announced 1 / 10 [ More Info ]
Autumn 2016 :: COMS E9911
COMS
9911
11354
001
TBA Instructor To Be Announced 0 / 0 [ More Info ]

Of Related Interest

Applied Physics and Applied Math

E4302 Methods in Computational Science

Biomedical Engineering

E3060 Introduction to genomic information science and technology

E4060 Introduction to genomic information

W4761 Computational genomics

Electrical Engineering

E3060 Introduction to genomic information science and technology

E4060 Introduction to genomic information science and technology

W4119 Computer networks

E4340 Computer hardware design

W4840 Embedded systems

E6870 Speech recognition