Earth and Environmental Engineering

Henry Krumb School of Mines
918 S. W. Mudd, MC 4711
Phone: 212-854-2905

Earth and Environmental Engineering at the Henry Krumb School of Mines fosters excellence in education and research for the development and application of science and technology to maximize the quality of life for all, through the sustainable use and responsible management of Earth’s resources.


The Earth and Environmental Engineering program fosters education and research in the development and application of technology for the sustainable development, use, and integrated management of Earth’s resources. Resources are identified as minerals, energy, water, air, and land, as well as the physical, chemical, and biological components of the environment. There is close collaboration with other engineering disciplines, the Lamont-Doherty Earth Observatory, the International Research Institute for Climate Prediction, the Center for Environmental Research and Conservation, and other Columbia Earth Institute units.


The School of Mines of Columbia University was the first mining and metallurgy school in the U.S. (1864). It became the foundation for Columbia’s School of Engineering and Applied Science and later the home of the Department of Mining, Metallurgical and Mineral Engineering. However, the title "School of Mines" was retained by Columbia University honoris causa. You can see the bronze statue of The Metallurgist (Le Marteleur) in front of Columbia's Mudd Hall that was named after an alumnus of the School of Mines.

One century after its formation, the School of Mines was renamed Henry Krumb School of Mines (HKSM) in honor of the generous alumnus of the School of Mines and his wife, Lavon Duddleson Krumb. HKSM has been a leader in mining and metallurgy research and education, including the first mining handbook by Professor Peel, the first mineral processing handbook by Professor Taggart, and other pioneering work in mineral benefaction, chemical thermodynamics, kinetics, transport phenomena in mineral extraction and processing, ecological and environmentally responsible mining, and pursuit of state-of-the-art research advancing responsible use of our earth resources. The Henry Krumb School of Mines located in The Fu Foundation School of Engineering and Applied Science offers students interested in mining and metallurgy the opportunity to focus their studies in these fields within the department of Earth and Environmental Engineering.

In 1986, HKSM was designated by Governor Cuomo as the mining and Mineral Resources Research Institute of the State of New York.

The Henry Krumb School of Mines within The Fu Foundation School of Engineering and Applied Science (SEAS) has three units:

  • The Department of Earth and Environmental Engineering (EEE): With the creation of the Earth Institute at Columbia University, a major initiative in the study of Earth, its environment and society, the traditional programs of HKSM in mining, mineral processing, and extractive metallurgy were expanded in the late nineties to encompass environmental concerns related to the use of materials, energy and water resources, and to reflect one of nine departments of SEAS with a focus on the development and application of technology for the sustainable development, use and integrated management of Earth's resources.
  • Columbia’s interdepartmental program in Materials Science and Engineering (MSE) is the successor of the HKSM traditional physical metallurgy program and focuses on the design of advanced materials and the effects of composition and processing on material properties. This program, administered by the Department of Applied Physics and Applied Mathematics, is described in another section of this bulletin.
  • The Earth Engineering Center is the engineering unit of The Earth institute and is dedicated to directing engineering research toward the reconfiguring of industrial activities with full understanding of their environmental impacts. Several faculty of the HKSM are associated with the Earth Engineering Center.

As a result of the vast developments in the technologies and fields of environmental management, in 1996 and 1998 respectively, the engineering school created the M.S. program in Earth Resources Engineering and the B.S. program in Earth and Environmental Engineering to meet the needs of a changed society. Students interested in the traditional disciplines of mining, mineral engineering and metallurgy continue to study these fields through the Earth and Environmental Engineering department course offerings as well as the course offerings through the Material Science and Engineering program.

The B.S. program in Earth and Environmental Engineering was initiated in the fall of 1998 to replace the mining/ mineral/extractive metallurgy programs of HKSM and is now accredited by the Engineering Accreditation Commission of ABET,


Starting in 1996, the educational programs of Columbia University in mining and mineral engineering were transformed into the present program in Earth and Environmental Engineering (EEE). This program is concerned with the environmentally sound extraction and processing of primary materials (minerals, fuels, water), the management and development of land and water resources, and the recycling or disposal of used materials. EEE offers the Bachelor of Science (B.S.) in Earth and Environmental Engineering, the Master of Science (M.S.) in Earth and Environmental Engineering, and the doctorate degrees (Ph.D., Eng.Sc.D.) in EEE.

The EEE program welcomes Combined Plan students. An EEE minor is offered to all Columbia engineering students who want to enrich their academic record by concentrating some of their technical electives on Earth/Environment subjects. There is close collaboration between EEE and the Departments of Civil Engineering and Earth and Environmental Sciences, including several joint appointments.


Columbia Water Center. The Center was established in 2008 to address issues of Global Water Security. It currently has 3 major initiatives:

The Global Water Sustainability Initiative is focused on an assessment of global water scarcity and risk, and innovations across scales, from farmer’s field to reservoir optimization to national policy modifications to international trade, to develop real world solutions to an impending global water crisis. 

The Global Flood Initiative recognizes that of all natural hazards, floods are responsible for the largest average annual loss of property and life. They are also a significant contributor to pollutant loading and environmental impact in water bodies. In a globalized society the disruption of food, energy, and manufactured goods supply chains by floods has also emerged as an issue. The initiative is developing state-of-the-art climate analyses for global flood risk projection, its mapping onto supply chains, and risk management using novel structural and financial tools.

America’s Water is the third major initiative. It is driven by the goal of developing sustainable water management and infrastructure design paradigms for the 21st century, recognizing the linkages between urban functioning, food, water, energy, and climate. 

In addition, the department has active research on improving the efficiency of water use, reclamation and recycling in natural resource processing industries, and on the use of environmental microbiology for wastewater treatment and energy conversion. State-of-the-art methods from molecular genomics are being developed and used to address nitrification and denitrification
in wastewater treatment and energy production.

Center for Advanced Materials for Energy and Environment. The Center develops advanced materials to address challenges for closing the energy loop, carbon loop, and water loop. Using material genomics, the Center designs and synthesize various novel 2D, nano-structured, and functional materials and structures with intriguing physical, chemical, and mechanical properties, with applications from cradle to grave of the energy and environmental resources. Major areas include (a) negative emission, through scalable and low-cost materials for direct air capture of carbon dioxide, and seamless integration with efficient chemical and biological pathways of carbon conversion into useful products; (b) energy storage, through the development of compatible, low-cost, and scalable flexible batteries, structural batteries, and recyclable batteries that are of high energy and power densities; (c) novel material structures for water collection, desalination, catalysis, robotic functions, cosmetic and biomedical applications, etc.

Center for Life Cycle Analysis (CLCA). The Center for Life Cycle Analysis (CLCA) provides a framework for quantifying the potential environmental impacts of material and energy inputs and outputs of a process or product from “cradle to grave.” The mission of the Center is to guide technology and energy policy decisions with data-based, well-balanced, and transparent descriptions of the environmental profiles of energy generation and storage systems in current and future electricity grids. Current research thrusts include:

  • Solar energy grid integration: The CLCA is engaged in model development and technical and environmental systems analyses of renewable energy integration into electricity grids. It is developing models for evaluating and optimizing energy storage units for ramping rate control in photovoltaic power plants, optimizing penetration of solar and wind resources, and
    unit commitment and economic dispatch of conventional generators to compensate for solar and wind variability in large-scale penetrations.
  • Resource assessment and recycling of critical energy materials variability: The CLCA, together with the Brookhaven National Laboratory are developing technologies for optimizing recycling of various elements from end-of-life photovoltaic systems and infrastructures for their collection.
  • Life-cycle environmental and environmental health and safety (EH&S) risk assessment: Risk- and LCA-based comparisons of solar electric and conventional energy tecnologies in collaboration with Brookhaven National Laboratory and several European, South American, and Asian institutions.

Earth Engineering Center (EEC). EEC has concentrated on advancing the goals of sustainable waste management in the U.S. and globally. Economic development has resulted in the generation of billions of tons of used materials that can be a considerable resource, but when not managed properly, constitute a major environmental problem both in developed and developing nations. In 2003, in collaboration with the Energy Recovery Council of the U.S., EEC founded the Waste to Energy Research and Technology Council (WTERT). As of 2013, the Global WTERT Council has sister organizations in 14 countries including Canada, China, Germany, Greece, India, Italy, Mexico, and the U.K. EEC conducts a biannual survey of waste management in the 50 states of the Union.

Industry/University Cooperative Research Center for Particulate and Surfactant Systems (CPaSS). CPaSS was established in 1998 by the Henry Krumb School of Mines, Department of Chemical Engineering, and Department of Chemistry at Columbia University. The Center encompasses detailed structure-property assessment of several classes of surface-active molecules, including oligomeric, polymeric, and bio-molecules. The aim of CPaSS is to develop and characterize novel surfactants for industrial applications such as coatings, dispersions, deposition, gas hydrate control, personal care products, soil decontamination, waste treatment, corrosion prevention, flotation, and controlled chemical reactions.

The goals of CPaSS are to perform industrially relevant research to address the technological needs in commercial surfactant and polymer systems, develop new and more efficient surface-active reagents for specific applications in the industry and methodologies for optimizing their performance, promote the use of environmentally benign surfactants in a wide array of technological processes, and build a resource center to perform and provide state-of-the-art facilities for characterization of surface-active reagents.

International Research Institute for Climate Prediction (IRI). The IRI is the world’s leading institute for the development and application of seasonal to interannual climate forecasts. The mission of the IRI is to enhance society’s capability to understand, anticipate, and manage the impacts of seasonal climate fluctuations, in order to improve human welfare and the environment, especially in developing countries. This mission is to be conducted through strategic and applied research, education and capacity building, and provision of forecast and information products, with an emphasis on practical and verifiable utility and partnerships.

Langmuir Center for Colloids and Interfaces (LCCI). This Center brings together experts from mineral engineering, applied chemistry, chemical engineering, biological sciences, and chemistry to probe complex interactions of colloids and interfaces with surfactants and macromolecules. LCCI activities involve significant interaction with industrial sponsors and adopt an interdisciplinary approach toward state-of-the-art research on interfacial phenomena. Major areas of research at LCCI are thin films, surfactant and polymer adsorption, environmental problems, enhanced oil recovery, computer tomography, corrosion and catalysis mechanisms, membrane technology, novel separations of minerals, biocolloids, microbial surfaces, and interfacial spectroscopy.

Lenfest Center for Sustainable Energy. The mission of the Lenfest Center for Sustainable Energy is to advanced science and develop innovative technologies that provide sustainable energy for all humanity while maintaining the stability of the Earth's natural systems. The development of novel energy conversion pathways and technologies—particularly with reduced environmental footprints (i.e., CO2 emission and water usage)—is one of the greatest challenges faced by humanity that cannot be overcome by simply employing traditional scientific or engineering approaches. more than ever, the development and implementation of sustainable energy technologies require cross-cutting collaborations between natural science. engineering and social science disciplines. Furthermore, the development of viable policy frameworks and market structures are also important for the significant reduction of anthropogenic carbon emissions. To achieve this ambitious goal, we need to work together and encourage the effective, rapid transfer of knowledge between participating members of various fields and global communities. For more information: Lenfest Center for Sustainable Energy


The department arranges for undergraduate summer internships after the sophomore and junior years. Undergraduates can also participate in graduate research projects under the work-study program. Graduate research and teaching assistantships, as well as fellowships funded by the Department, are available to qualified graduate students. GRE scores are required of all applicants for graduate studies.